

Dicyclopentadienyl titanium and zirconium complexes with the double bridged bis(dimethylsilanodiyl) dicyclopentadienyl [(Me₂Si)₂(η^5 -C₅H₃)₂]²⁻ ligand: X-ray molecular structure of [Ti((SiMe₂)₂(η^5 -C₅H₃)₂)Me₂]¹

Ana Cano, Tomás Cuenca, Pilar Gómez-Sal², Antonio Manzanero², Pascual Royo *

Departamento de Química Inorgánica, Universidad de Alcalá de Henares, Campus Universitario, 28871 Alcalá de Henares Spain Received 7 March 1996; revised 21 May 1996

Abstract

The reaction of the doubly bridged bis(1,1',2,2'-dimethylsilanodiyl)- η^5 -dicyclopentadienyl titanium and zirconium complexes [M{(SiMe₂)₂(η^5 -C₅H₃)₂]Me₂] (M = Ti (3), Zr (4)) with water gave the μ -oxo derivatives [M[(SiMe₂)₂(η^5 -C₅H₃)₂]Me₂(μ -O)] (M = Ti (5), Zr (6)). Addition of one equivalent of M'R (M' = MgCl, R = CH₃, CH₂SiMe₃; M' = Li, R = CH₂CMe₂Ph) to toluene or diethyl ether solutions of [M{(SiMe₂)₂(η^5 -C₅H₃)₂]Cl₂] (M = Ti(1), Zr (2)) afforded the chloro alkyl derivatives [M{(SiMe₂)₂(η^5 -C₅H₃)₂]ClR] (M = Ti, R = CH₂SiMe₃ (8); M = Zr, R = Me (7), CH₂CMe₂Ph (9)). Compounds 3 and 4 reacted with [CPh₃]B(C₆F₅)₃] at -78 °C in CD₂Cl₂ leading to the cationic species [{M[(SiMe₂)₂(η^5 -C₅H₃)₂]Me₂(μ -Me)]⁺ (M = Ti (10), Zr (11)) as demonstrated by NMR spectroscopy. The titanium(III) and zirconium(III) derivatives [M{(SiMe₂)₂(η^5 -C₅H₃)₂)(μ -Cl)]₂ (M = Ti (12), Zr (13)) were obtained by reduction of 1 and 2 with one equivalent of sodium amalgam. The X-ray molecular structure of [Ti{(SiMe₂)₂(η^5 -C₅H₃)₂]Me₂] (3) has been determined by diffraction methods.

Keywords: Titanium; Zirconium; Cationic metallocenes; Alkyl group 4 metals

1. Introduction

Ansa-metallocene complexes of the early transition metals have received considerable attention in recent years [1]. The presence of a bridging group restricts the mobility of the cyclopentadienyl rings, providing a more rigid system that renders the activation of their C-H bonds more difficult.

The bis(dimethylsilanodiyl)dicyclopentadienyl anion $[SiMe_2 (C_5H_4)_2]^{2-}$ can be coordinated to metal centers as a chelating or as a bridging group. This ligand has been successfully used to stabilize Group 4 metal complexes in both high and low oxidation states. The chemistry of mononuclear compounds with symmetric and asymmetric rings bridged by an SiR₂ fragment, and their potential applications as catalysts in stereo- and

enantioselective hydrogenation and polymerization of olefins, has been extensively studied. Chiral ansametallocenes containing a C_2 symmetrical arrangement of ring substituents have also proved to be effective precursors for generating Ziegler-Natta catalysts, which induce isotacticity in the polymerization of propylene and other α -olefins [2,3]. Recently, the syntheses of similar halo- and alkyl-titanium(IV) derivatives [4], as well as new titanium(III) and (II) metallocene complexes [5] containing this ligand as a chelating system have been reported, including some aspects of their chemical behavior.

Dinuclear compounds are also well represented [6], although they are less well-known for Group 4 metals [7] and not many dinuclear derivatives of these metals are known in low oxidation states.

We were interested in isolating and studying the reactivity of cyclopentadienyl Group 4 metal complexes by using the bis(dimethylsilanodiyl)dicyclopentadienyl dianion $[(SiMe_2)_2(\eta^5-C_5H_3)_2]^{2-}$ as a ligand to increase the stereorigidity of the complex. Different mono- and oligo-nuclear transition metal derivatives containing this

^{*} Corresponding author.

¹ Dedicated to Professor Rafael Usón on the occasion of his 70th birthday.

² X-ray diffraction studies.

ligand have been reported [8], but few Group 4 metal complexes are known [9,10]. Here we report the synthesis and structural characterization of the bis(1,1',2,2'-dimethylsitanodiyl)- η^5 -dicyclopentadienyl titanium(IV) and zirconium(IV) oxoderivatives [{M[(SiMe_2)_2(η^5 -C₅H₃)₂]Me}₂(μ -O)] (M = Ti (5), Zr (6)), the chloroalkyl complexes [M{(SiMe_2)_2(η^5 -C₅H₃)₂}CIR] (M = Ti, R = CH₂SiMe₃ (8); M = Zr, R = Me (7), CH₂CMe₂Ph (9)) and the characterization of the previously reported [10] complex 3 by X-ray diffraction methods. The spectroscopic characterization of the cationic species [{M[(SiMe_2)_2(η^5 -C₅H₃)₂]Me}₂(μ -Me)]* (M = Ti (10), Zr (11)) is also reported.

2. Results and Discussion

The reaction of a diethyl ether solution of $[M((SiMe_2)_2(\eta^5-C_5H_3)_2)Cl_2]$ (M = Ti (1), Zr (2)) at -78 °C with two equivalents of the appropriate alkylating agent (LiMe or MgClMe) led to the dimethyl derivatives $[M((SiMe_2)_2(\eta^5-C_5H_3)_2)Me_2]$ (M = Ti (3), Zr (4)) as previously described [10]. Complexes 3 and 4

are air- and moisture-sensitive, both in solution and in the solid state. They can, however, be stored unaltered for weeks if strictly anaerobic conditions are maintained. In the presence of a stoichiometric amount of water, hydrolysis takes place and the μ -oxo dinuclear derivatives $[\{M[(SiMe_2)_2(\eta^5-C_5H_3)_2]Me\}_2(\mu-O)]$ (M = Ti (5), Zr (6)) are isolated in 40-50% yield (Scheme 1)

When 2 reacts with one equivalent of MgClMe the chloro methyl compound $[Zr\{(SiMe_2)_2(\eta^5-C_5H_3)_2\}ClMe]$ (7) is obtained. Analogous chloro alkyl complexes $[M\{(SiMe_2)_2(\eta^5-C_5H_3)_2\}ClR]$ (M = Ti, R = CH₂SiMe₃ (8); M = Zr, R = CH₂CMe₂Ph (9)) are the only products obtained from the reaction of 1 or 2 with MgCl(CH₂SiMe₃) or LiCH₂CMe₂Ph, whatever the molar ratio may be.

All of the new isolated compounds are soluble in chlorinated solvents (chloroform, dichloromethane) as well as in aromatic hydrocarbons (benzene, toluene) and slightly coluble in hexane and pentane. Their solubilities range in the order 7.8.9 > 3.4. > 5.6 > 1.2.

The IR spectra of all of these complexes show the characteristic absorptions reported [11] for $\nu_{as}(Si-C)$

Scheme 1.

Table 1 NMR data (δ) for complexes 5-9

Compound	'H NMR		¹³ C NMR ⁴	
	C_6D_6	CDCl ₃	C_6D_6	
5	-0.19 (s, 6H, Me-Ti)	_		
	0.15 (s, 6H, Me-Si)	_		
	0.33 (s, 6H, Me-Si)	_		
	0.40 (s, 6H, Me-Si)	_		
	0.90 (s, 6H, Me-Si)	_		
	6.64 (m, 4H, C ₅ H ₃)			
	6.74 (m, 4H, C ₅ H ₃)	_		
	6.79 (m, 4H, C ₅ H ₃)			
	0.23 (s, 6H, Me-Zr)	0.10 (s, 6H, Me-Zr)		
	0.25 (s, 6H, Me-Si)	0.35 (s, 6H, Me-Si)		
	0.50 (s, 6H, Me-Si)	0.63 (s, 6H, Me-Si)		
	0.58 (s, 6H, Me-Si)	0.67 (s, 6H, Me-Si)		
	0.74 (s, 6H, Me-Si)	0.84 (s, 6H, Me-Si)		
	6.05 (m, 4H, C ₅ H ₃)	5.93 (m, 4H, C ₅ H ₃)		
	6.51 (m, 4H, C ₅ H ₃)	6.35 (m, 4H, C ₅ H ₃)		
	6.82 (m, 4H, C ₅ H ₃)	$6.79 \text{ (m, 4H, C}_5\text{H}_3\text{)}$		
,	0.05 (s, 3H, Me-Zr)			
	0.32 (s, 3H, Me-Si)			
	0.42 (s, 3H, Me-Si)			
	0.46 (s, 3H, Me-Si)			
	0.48 (s, 3H, Me-Si)			
	6.19 (m, 2H, C ₅ H ₃)			
	6.68 (m, 2H, C ₅ H ₃) 6.70 (m, 2H, C ₅ H ₃)			
	• •	0.027.000.04. (2)	EE(Ma Si)	
}	-0.14 (s, 3H, Me-Si)	-0.02 (s, 9H, Me ₃ -Si)	-5.5 (Me-Si)	
	0.17 (s, 3H, Me-Si)	0.22 (s, 3H, Me-Si)	- 4.92 (Me-Si)	
	0.31 (s, 9H, Me ₃ -Si)	0.36 (s, 3H, Me-Si)	1.39 (Me-Si)	
	0.37 (s, 3H, Me-Si)	0.71 (s, 3H, Me-Si)	1.8 (Me-Si)	
	0.42 (s, 3H, Me-Si)	0.75 (s, 3H, Me-Si)	2.96 (Me ₃ -Si)	
	1,13 (s, 2H, −CH ₂ −)	1.03 (s, 2H, ~CH ₂ ~)	56.41 (~CH ₂ -)	
	6.75 (m, 2H, C ₅ H ₃)	6.77 (m, 2H, C_5H_3)	110.39 (C ₁ (C ₅ H ₃))	
	6,79 (m, 2H, C_5H_3)	6.87 (m, 2H, C ₅ H ₃)	115.00 (C ₅ (C ₅ H ₃))	
	6.81 (m, 2H, C ₅ H ₃)	6.98 (m, 2H, C ₅ H ₄)	119.84 (C ₃ (C ₅ H ₃))	
	,		137.08 (C_2 or C_4 (C_5H_3))	
			$140.33 (C_2 \text{ or } C_4 (C_5 H_4))$	
)	(),()19 (s, 6H, Me=Si)	Autori	= 5.148 (Mc-Si)	
	0.33 (s, 6H, Me=Si)	WALLAGE	- 4.66 (Me-Si)	
	0.38 (s, 6H, Me=Si)	oess.	0.70 (Me-Si)	
	0.46 (s, 6H, Me = Si)	and the second	1.55 (Me-Si)	
	1.478 (s. 12H, Me ₂ C)	Market 1	34.48 (CMe ₂)	
	1,59 (s, 4H, -CH ₂ -)	with the second	40.06 (CMe ₂)	
	5.97 (m, 4H, C, H,)		69.37 (CH ₂)	
	6.15 (m, 4H, C ₃ H ₃)	~~	110.75 (Ph)	
	6.68 (m, 4H, C ₅ H ₃)		113.62 (C ₅ H ₄)	
	7.4–7.2 (m, 10H, Ph)		114.66 (Ph)	
	7.7-7.2 (III, 1011, 1 II)		124.76 (C ₅ H ₃)	
			125.76 (C ₃ H ₃)	
			131.66 (C.H.)	
			134.89 (C ₄ H ₄)	
			135,18 (Ph)	
			1,00,00 NEW	

a Key:

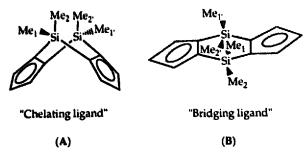
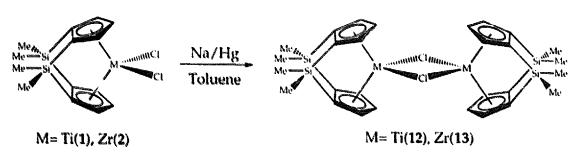


Fig. 1. Chelating (A) and bridging (B) dispositions for the bis(1,1',2,2'-dimethylsilanodiyl- η^5 -dicyclopentadienyl) ligand.

and ν (Si-C) vibrations between 700 and 600 cm⁻¹ and broad signals near 800 cm⁻¹ for ν (M-O-M) vibrations.


H and 13 C NMR spectra for complexes 5–9 in C₆D₆ and CDCl₃ are summarized in Table 1. These spectra show three multiplets for the non-equivalent cyclopentadienyl protons (H_3-H_5) and four singlets for the methyl protons bonded to silicon in the bridging group, indicating loss of the plane of symmetry observed for compounds [M((SiMe,),(η^5 -C₅H₃),)X,] with two equivalent substituents in the reflection plane. Similar features are observed in the 13C NMR spectra in which five signals for the C₁-C₅ atoms and four signals for the Me=Si groups are present. All these data are in agreement with the chelating disposition (A) (Fig. 1) of the bis(1.1',2,2'-dimethylsilanodiyl-n³-dicyclopentadienyl) ligand in metallocene-type derivatives, and with the presence of two different ligands occupying the other pseudotetrahedral positions around the metal center.

The reaction of the dimethyl complexes 3 and 4 with half an equivalent of $[CPh_3][B(C_6F_5)_4]$ at $-78^{\circ}C$ in CD_2Cl_2 led to the quantitative formation of dinuclear methyl-bridged cationic complexes $[\{M[tSiMe_2]_2(\eta^5-C_5H_3)_2]Me]_2(\mu-Me)]^{\circ}$ M=Ti, 10 (red) and M=Zr, 11 (yellow) (Scheme 1), as evidenced by ${}^{1}H$ NMR spectroscopy. When the same reactions are carried out in a 1:1 molar ratio no identifiable species are observed. Complexes 10 and 11 have been identified by ${}^{1}H$ NMR at low temperature, decomposing above $-40^{\circ}C$. They could not be isolated as solids at room temperature. The

μ-CH₃ ligands are identified in the ¹H NMR spectrum by a singlet at $\delta - 1.22$ for the titanium and $\delta - 0.83$ for the zirconium compound, and by a signal in the ¹³C NMR spectra at δ 29.8 and δ 30.1 respectively, whereas the terminal methyl groups appear at δ 0.05 for 10 (13 C NMR: $\delta 51.1$) and $\delta = 0.19$ for 11 (¹³C NMR: $\delta 51.9$). These $[\{M[(SiMe_3),(\eta^5-C_5H_3),]Me\},(\mu-Me)]^+$ complexes can be considered as containing one cationic 14-electron fragment $[M{(SiMe_2)_2(\eta^5-C_5H_3)_2}Me]^+$ stabilized by adduct formation with the neutral dimethyl metallocene complexes [M{(SiMe,),(η^5 -C₅H₃),}Me,] as ligands [3]. With this disposition the three protons of the cyclopentadienyl rings and the methyl groups bonded to silicon are not equivalent, and three multiplets (δ 6.20, 6.97 and 7.11 for **10** and δ 6.33, 6.59 and 6.98 for 11) and four singlets (δ 0.15, 0.44, 0.67 and 0.73 for **10** and δ 0.28, 0.29, 0.80 and 0.85 for **11**) are observed in the ${}^{1}H$ NMR at -78 ${}^{\circ}C$. The same features are observed in the 13 C NMR spectra (10: $\delta - 8.0$, -5.8, -4.1, 0.9 (Si-Me); 125.9, 127.8, 128.2, 128.4, 129.1 (C_sH_s) ; 11: δ 1.4, 1.8, 3.6, 4.9 (Si-Me); 117.1, 125.8, 127.7, 128.5, 148.6 (C₅H₃)).

Reduction of a toluene solution of the titanium(IV) and zirconium(IV) derivatives 1 and 2 with sodium amalgam (10%) in a 1:1 molar ratio gave the μ -chlorotitanium(III) and zirconium(III) complexes [M{(SiMe₂)₂(η ⁵-C₅H₃)₂{(μ -Cl)]₂ (M = Ti, 12; Zr, 13) as red and red-brown solids respectively, in 75-80% yield (Scheme 2).

Complexes 12 and 13 are scarcely soluble in THF or toluene and insoluble in hexane. They react in chloroform or dichloromethane, being immediately transformed into the corresponding chloro-metal(IV) derivatives 1 and 2. Complex 13 is diamagnetic, and the 1 H NMR spectrum in C_6D_6 shows two signals at δ 0.62 and 0.74 for the methylsilyl protons of the bridging ligand and two signals at δ 5.02 (pseudotriplet) and 5.93 (pseudodoublet) for the cyclopentadienyl protons of an AAB spin system (ratio 3:3:1:2). Complex 12 is paramagnetic, and the 1 H NMR shows broad signals at δ 17, 3 and 0.0 and the spin-lattice relaxation times [12] confirm the paramagnetic nature of the compound (see Table 2).

Scheme 2.

Table 2 Spin-lattice relaxation time $\{T_1\}$ (deg) for compound 12

•			
Compound	$\delta(C_6D_6)$	7 ₁ (deg)	
12	17.5	0.0010	
	3.84	0.0017	
	2.89	0.0051	
	0.10	0.0792	
	0.0087	0.0163	

2.1. Description of the crystal structure of Til μ -(SiMe₂)₂(η^5 -C₅H₃)₂|Me₂ (3)

The crystal and molecular structure of 3 was determined by X-ray diffraction methods. There are two independent molecules in the asymmetric unit of the unit cell. Since the structures of the two molecules are similar, only one is described in detail; data for the second are given in parentheses.

Fig. 2 shows the molecular structure and atom numbering scheme of molecule 1. Final atomic coordinates and equivalent isotropic thermal parameters for non-hydrogen atoms are given in Table 3. Selected bond distances and angles are given in Table 4.

The molecular structure of **3** is typical of a bis ligand metallocene system, with the two Cp moieties linked by two SiMe₂ bridges, similar to $[M(SiMe_2)_2(\eta^5-C_5H_3)_3]Cl_2]$ (M = Ti,Zr) [10].

Owing to the rigidity imposed by the double bridge, the Cp rings are eclipsed, and the two silicon and single titanium atoms define a plane in which the two methyl groups bonded to each titanium and silicon atom are located.

The two Cp rings are planar and the dihedral angle between them is $63.5(2)^{\circ}$ ($64.1(2)^{\circ}$), similar to that found in the aforementioned [Ti{(SiMe₂)₂(η^{5} -C₅H₃)₂)Cl₂][10].

Related to it the angle Cp(1)-Ti(1)-Cp(2) is 126.8°

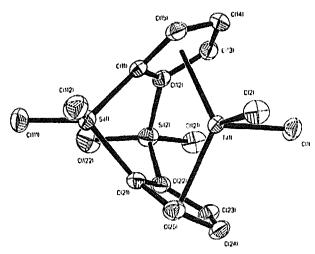


Fig. 2. ORDEP view of molecular structure of compound 3 with the atomic labeling scheme.

Table 3 Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters ($\mathring{A}^2 \times 10^3$) for compound 3

	A.	y	:	$U_{\rm eq}$
Ti(1)	8175(1)	1941(1)	3855(1)	45(1)
C(1)	9210(4)	1796(4)	3100(4)	68(2)
C(2)	8434(4)	3198(4)	4018(4)	72(2)
Ti(2)	7472(1)	1328(1)	9086(1)	46(1)
C(3)	6582(4)	1816(4)	9855(4)	76(2)
C(4)	8492(4)	2320(4)	9431(4)	72(2)
C(11)	6495(3)	1735(3)	3609(3)	51(1)
C(12)	6857(3)	1079(3)	3182(3)	53(1)
C(13)	7069(3)	1410(4)	2410(3)	59(2)
C(14)	6861(3)	2219(4)	2354(3)	63(2)
C(15)	6505(3)	2423(4)	3074(3)	58(1)
Si(1)	6596(1)	1742(1)	4861(1)	60(1)
C(111)	5730(3)	1054(4)	5178(3)	85(2)
C(112)	6438(3)	2767(3)	5248(3)	77(2)
Si(2)	7487(1)	178(1)	3830(1)	67(1)
C(121)	8207(4)	-353(3)	3174(4)	93(2)
C(122)	6689(5)	- 567(4)	4162(4)	111(2)
C(21)	7946(3)	1461(3)	5200(3)	53(1)
C(22)	8320(3)	810(3)	4777(3)	56(1)
C(23)	9318(3)	1015(4)	4868(3)	61(2)
C(24)	9562(3)	1736(4)	5311(3)	60(2)
C(25)	8734(3)	2006(4)	5531(3)	56(1)
C(31)	8408(3)	189(3)	9090(3)	51(1)
C(32)	7509(3)	-43(3)	9277(3)	50(1)
C(33)	7597(3)	237(3)	10169(3)	59(1)
C(34)	8491(3)	649(3)	10528(3)	63(1)
C(35)	8991(3)	609(3)	9876(3)	62(1)
C(41)	7305(3)	969(4)	7576(3)	46(1)
C(42)	6402(3)	720(3)	7764(2)	45(1)
C(43)	5898(3)	1437(3)	7838(3)	53(1)
C(44)	6437(4)	2091(4)	7716(3)	58(2)
C(45)	7296(3)	1795(4)	7550(3)	56(1)
Si(3)	8453(1)	340(1)	7888(1)	57(1)
C(131)	8406(4)	= 561(3)	7170(4)	92(2)
C(132)	9562(3)	935(3)	7904(4)	80(2)
Si(4)	6295(1)	-234(1)	8341(I)	53(1)
C(141)	5239(3)	~ 207(3)	8808(3)	78(2)
C(142)	6183(4)	- 1151(3)	7630(3)	74(2)

 $U_{
m eq}$ is defined as one-third of the trace of the orthogonalized U_{ij}

(126.7°). The Ti-C distances range from 2.313(5) to 2.487(4) Å, but this does not imply a deviation from planarity in the rings, nor a significant variation in the C-C distances. The Ti-centroid distances are 2.07 Å, and all these values correspond to a 5° mean deviation of the metal centroid line from the normal between titanium and the ring plane, comparable with the reference complex [10]. The Ti-methyl distances are in the range from 2.138(7) to 2.158(5) Å, normal for these systems.

3. Experimental section

All manipulations were performed under an inert atmosphere (argon) using Schlenk and high vacuum line

Table 4
Selected bond lengths (Å) and angles (deg) for compound 3

Selected bond le	nguis (A) and	angles (deg) for con	npound 5
Ti(1)-C(1)	2.158(5)	Ti(2)-C(3)	2.149(6)
Ti(1)-C(2)	2.138(7)	Ti(2)-C(4)	2.157(6)
Ti(1)-C(11)	2.320(4)	Ti(2)-C(31)	2.324(4)
Ti(1)-C(12)	2.325(4)	Ti(2)-C(32)	2.313(5)
Ti(1)-C(13)	2.425(4)	Ti(2)-C(33)	2.433(5)
Ti(1)-C(14)	2.487(4)	Ti(2)-C(34)	2.485(4)
Ti(1)-C(15)	2.424(4)	Ti(2)-C(35)	2.424(4)
Ti(1)-C(21)	2.327(4)	Ti(2)-C(41)	2.321(4)
Ti(1)-C(22)	2.330(5)	Ti(2)-C(42)	2.332(4)
Ti(1)-C(23)	2.411(5)	Ti(2)-C(43)	2.431(4)
Ti(1)-C(24)	2.471(4)	Ti(2)-C(44)	2.487(5)
Ti(1)-C(25)	2.425(4)	Ti(2)-C(45)	2.410(5)
Si(1)~C(111)	1.861(5)	Si(3)-C(131)	1.855(5)
Si(1)=C(112)	1.854(5)	Si(3)=C(132)	1.859(5)
Si(1)-C(11)	1.872(4)	Si(3)-C(41)	1.871(5)
Si(1)=C(21)	1.878(4)	Si(3)~C(31)	1.876(4)
Si(2)C(121)	1.873(6)	Si(4)-C(141)	1.860(4)
Si(2)C(122)	1.865(6)	Si(4)-C(142)	1.859(5)
Si(2)-C(12)	1.867(5)	Si(4)-C(32)	1.878(4)
Si(2)=C(22)	1.871(5)	Si(4)-C(42)	1.855(5)
C(11)~C(15)	1.415(6)	C(31)-C(35)	1.406(6)
C(11)=C(12)	1.455(6)	C(31)-C(32)	1.450(5)
C(12)=C(13)	1.421(6)	C(32)-C(33)	1.409(6)
C(13)-C(14)	1.383(7)	C(33)=C(34)	1.393(6)
C(14)=C(15)	1.395(6)	C(34)-C(35)	1.402(6)
C(21) - C(25)	1.405(6)	C(41)=C(45)	1.386(7)
C(21)~C(22)	1.456(6)	C(41)-C(42)	1.464(5)
C(22) = C(23)	1.422(6)	C(42)=C(43)	1.422(6)
C(23)=C(24)	1.374(7)	C(43)=C(44)	1.384(7)
C(24)=C(25)	1.400(6)	C(44)=C(45)	1.415(7)
Ti(1)=Cp1	2.073	Ti(2)=Cp3	2.074
Ti(1)=Cp2	2.138	Ti(2)Cp4	2.073
C(2)~Ti(1)~C(1)	93.0(2)	C(3)=Ti(2)=C(4)	92,4(3)
Cp1 = Ti(1) - Cp2	126.8	Cp3~Ti(2)~Cp4	126.7
C(2)=Ti(1)=Cp2	108.7	C(4)=T((2)=Cp4	107.9
C(2)=Ti(1)-Cp1	107,8	C(4) - Ti(2) - Cp3	108.3
C(1)=Ti(1)=Cp2	108.3	- C(3)=Ti(2)=Cp4	108,3
C(1)=Ti(1)=Cp1	107.4	C(3)=Ti(2)=Cp3	107.9

Cp1 is the centroid of C(11), C(12), C(13), C(14) and C(15),

techniques or a VAC Model HE 63P glovebox. Solvents were purified by distillation from an appropriate drying-deoxygenating agent (sodium-benzophenone for diethyl ether, sodium for toluene, and sodium-potassium alloy for hexane).

4,4,8,8-Tetramethyltetrahydro-4,8-disila-s-indacene [13], the metallocenes [M((SiMe₂)₂(η^5 -C₃H₄)₂)Cl₂] (M = Ti, Zr) [10], [M((SiMe₂)₂(η^5 -C₃H₄)₂)Me₂] (M = Ti, Zr) [10], and LiCH₂CMe₂Ph [14] were prepared according to literature procedures.

LiMe (1.6 M solution in diethyl ether). MgClMe (1 M solution in THF), MgCl(CH₂SiMe₃) (3 M solution in THF), TiCl₄, ZrCl₄, Na, Hg (Aldrich) were obtained commercially.

NMR spectra were recorded either on Varian Unity 300 and Varian Unity 500 Plus instruments (¹H and ¹³C

chemical shifts were referenced to external Me₄Si, δ = 0 ppm). IR spectra were performed (Nujol mulls) on a Perkin-Elmer 883 spectrophotometer. Mass spectra were recorded on a Hewlett-Packard 5890 spectrometer. Elemental C and H analysis were carried out on a Perkin-Elmer 240B microanalyzer.

3.1. Synthesis of $\{\{Til(SiMe_2)_2(\eta^3-C_5H_3)_2|Me\}_2(\mu-O)\}$ (5)

A solution of [Ti{(SiMe₂)₂(η^5 -C₅H₃)₂}Me₂] 3 (0.5 g, 1.56 mmol) in toluene (50 ml) was treated with H₂O (28.1 μ l, 1.56 mmol). The reaction mixture was stirred for 12 h. The solvent was completely removed in vacuo to give an orange solid. Recrystallization from toluene-hexane at -20° C gave a microcrystalline solid characterized as 5 (0.24 g, 50% yield). Anal. Found: C, 57.3; H, 6.70. C₃₀H₄₂OSi₄Ti₂. Calc.: C, 57.49; H, 6.75%. Mass spectrum m/z: M⁺-[{Ti[(SiMe₂)₂(η^5 -C₅H₃)₂]₂(μ -O)] 15.7%; M⁺-[Ti{(SiMe₂)₂(η^5 -C₅H₃)₂] (2.90%).

3.2. Synthesis of $\{\{Zr\}(SiMe_2), (\eta^5 - C_5H_3), |Me\}_2(\mu - O)\}$ (6)

A solution of [Zr{(SiMe₂)₂(η^5 -C₅H₃)₂}Me₂] 4 (0.5 g, 1.37 mmol) in toluene (50 ml) was treated with H₂O (24.7 μ l, 1.37 mmol). The reaction mixture was stirred for 12 h. The solvent was evaporated in vacuo to a volume of 10 ml and cooled at -20°C to obtain a yellow solid which was recrystallized from toluene-hexane and characterized as 6. (0.21 g, 43% yield). Anal. Found: C, 51.32; H, 5.71, C₃₀H₃₂OSi₄Zr₂, Cale.: C, 50.91; H, 5.93%. Mass spectrum m/z: M* $-\{\{Zr\{(SiMe_2)_2(\eta^5-C_5H_3)_2\}\}_2(\mu-O)\}$ (15.7%).

3.3. Synthesis of $[Zr\{(SiMe_{\gamma}),(\eta^{\beta}-C_{\beta}H_{\gamma}),\}ClMe]$ (7)

MgClMe (1.81 ml of a 1 M THF solution, 1.81 mmol) was added dropwise to a stirring solution of [Zr{(SiMe₂)₃(η^5 -C₅H₃)₃]Cl₂] **2** (0.5 g, 1.24 mmol) in toluene (50 ml) at -78° C. The reaction mixture was warmed to room temperature and stirred for 12 h. After filtration, the solution was concentrated under vacuum to yield a white product, which was recrystallized from diethyl ether to yield a crystalline solid characterized as **7** (0.21 g, 45% yield). Anal. Found: C, 47.2; H, 5.63. C₁₅H₂₄ClSi₂Zr. Calc.: C, 46.9; H, 5.93%. Mass spectrum m/z: [M]* (7.08%).

3.4. Synthesis of $Ti\{(SiMe_2)_2(\eta)^3 - C_5H_3\}$, $C(CH,SiMe_2)$ (8)

MgCl(CH₂SiMe₃) (1.38 mt of a 1 M THF solution, 1.38 mmol) was added dropwise to a stirring solution of

Cp2 is the centroid of C(21), C(22), C(23), C(24) and C(25),

Cp3 is the centroid of C(31), C(32), C(33), C(34) and C(35),

Cp4 is the centroid of C(41), C(42), C(43), C(44) and C(45),

[Ti{(SiMe₂)₂(η^5 -C₅H₃)₂}Cl₂] 1 (0.5 g, 1.38 mmol) in diethyl ether (50 ml) at -78 °C. The reaction mixture was warmed to room temperature and stirred for 12 h. After filtration, the solution was evaporated to dryness and the resultant solid extracted into hexane. The white precipitate which formed was allowed to settle and was removed by filtration. The resulting solution was evaporated to yield an orange solid which was recrystallized from hexane at -30 °C and characterized as 8. (0.37 g, 65% yield). Anal. Found. C, 51.90; H, 7.32; Cl, 7.98. C₁₈H₂₉ClSi₃Ti. Calc.: C, 52.35; H, 7.08; Cl, 8.58%. Mass spectrum m/z: [M]⁺-(CH₂SiMe₃) (14.10%).

3.5. Synthesis of $[Zr\{(SiMe_2)_2(\eta^5-C_5H_3)_2\}C((CH_2CMe_2Ph)]$ (9)

A solution of Li(CH₂CMe₂Ph) (0.19 g, 1.48 mmol) in diethyl ether (20 ml) was added dropwise to a stirring solution of [Zr{(SiMe₂)₂(η^5 -C₅H₃)₂}Cl₂] **2** (0.3 g, 0.74 mmol) in diethyl ether (40 ml) at -78 °C. The reaction mixture was warmed to room temperature and stirred for 12 h. After filtration, the solvent was completely removed in vacuo and the solid obtained extracted into hexane. The white precipitate which formed was allowed to settle and was removed by filtration. The resulting solution was evaporated to yield an orange solid which was recrystallized from hexane at -30 °C and characterized as **9**. (0.26 g, 63% yield). Anal. Found: C, 51.49; H, 5.23. C₂₄ H₃₁ClSi₂Zr. Calc.: C, 51.43; H, 5.93%. Mass spectrum m/z: [M⁺] (12.1%).

3.6. Synthesis of $|\{Til(SiMe_2)_2(\eta^5-C_5H_3)_2\}Me\}_2(\mu-Me)|^+$ (10)

A solution of [CPh₃][B(C_6F_5)₄] (0.028 g, 0.0312 mmol) in CD₂Cl₂ (1.5 ml) at -78 °C was added to a solution of 3 (0.020 g, 0.062 mmol) in CD₂Cl₂ (2 ml) in an NMR tube at ca. -78 °C. The tube was sealed under vacuum at -78 °C and the reaction was studied by NMR spectroscopy.

3.7. Synthesis of $|\{Zr|(SiMe_2)_2(\eta^3-C_5H_3)_2|Me\}_2(\mu-Me)|^+$ (11)

A solution of $[CPh_3][B(C_6F_5)_4]$ (0.025 g, 0.0275 mmol) in CD_2CI_2 (1.5 ml) at -78 °C was added to a solution of 4 (0.020 g, 0.05 mmol) in CD_2CI_2 (2 ml) in an NMR tube at ca. -78 °C. The tube was sealed under vacuum at -78 °C and the reaction was studied by NMR spectroscopy.

3.8. Synthesis of $|Ti\{(SiMe_2)_2(\eta^5-C_5H_3)_2\}(\mu-Cl)|_2$ (12)

Toluene (60 ml) was added to a mixture of $[Zr{(SiMe_2)_2(\eta^5-C_5H_3)_2}]Cl_2]$ 2 (0.5 g, 1.38 mmol) and 10% sodium-amalgam (0.035 g, 1.52 mmol) at room temperature and then stirred for 12 h. An amber solution

was formed. After filtration and complete removal of solvent in vacuo, a red-brown solid was obtained. Recrystallization from toluene—hexane at -35°C gave a microcrystalline solid characterized as 12. (0.33 g, 75% yield). Anal. Found: C, 51.23.; H, 5.96. C₁₄H₁₈ClSi₂Ti. Calc.: C, 51.60.; H, 5.58%.

3.9. Synthesis of $[Zr\{(SiMe_2)_2(\eta^5-C_5H_3)_2\}(\mu-Cl)]_2$ (13)

Toluene (60 ml) was added to a mixture of $[Ti\{(SiMe_2)_2(\eta^5-C_5H_3)_2\}Cl_2]$ 1 (0.5 g, 1.24 mmol) and 10% sodium-amalgam (0.043 g, 1.9 mmol) at room temperature. The mixture was then stirred for 12 h. A purple solution was formed. After filtration and complete removal of solvent in vacuo, a red-brown solid was obtained. Recrystallization from toluene-hexane at -35 °C gave a microcrystalline solid characterized as 13. (0.32 g, 70% yield). Anal. Found: C, 45.31; H, 5.28. $C_{14}H_{18}ClSi_2Zr$. Calc.: C, 45.55; H, 4.91%.

Table 5
Crystal data and structure refinement for 3

Compound	3
Empirical formula	TiSi ₂ C ₁₆ H ₂₄
Crystal size (mm ³)	$0.2 \times 0.2 \times 0.3$
Color	Red
Crystal habit	Prismatic
Formula weight	320.43
Temperature (K)	293(2)
Wavelength (Å)	0.71069
Crystal system	Monoclinic
Space group	$P2_1/n$
Unit cell dimensions	
a (Å)	14.221(7)
b (Å)	16.755(1)
c (Å)	15.282(7)
β (deg)	108.96(2)
Volume (Å ³)	3443(2)
Z	8
Density(cale) (gem 14)	1.236
Absorption coefficient (cm ⁻¹)	6.22
F(000)	1360
θ range for data collection (deg)	2.09 to 26.91
Index ranges	-18 < h < 18, 0 < k < 11,
	0 < 1 < 19
Reflections collected	5632
Independent reflections	$5275 (R_{int} = 0.0492)$
Refl. observed with $I > 2\sigma(I)$	3369
Absorption correction	N/A
Refinement method	Full-matrix least squares
	on F^2
Data/restraints/parameters	5265/0/421
Goodness-of-fit on F^2	1.151
Final R indices $(1 > 2\sigma(1))$	R1 = 0.0421,
	wR2 = 0.0980
R indices(all data)	R1 = 0.1247,
	wR2 == 0.1766
Largest diff. peak	0.283 and -0.239
and hole (e Å = 3)	

Weighting scheme calc.: $w = 1/[\sigma^2(F_0^2) + (0.0499P)^2 + 2.1915P]$ where $P = (F_0^2 + 2F_0^2)/3$.

3.10. Crystal and structural data for 3

A suitable crystal of 3 was sealed in a Lindemann tube under an atmosphere of argon and mounted on an Enraf-Nonius CAD-4 automatic four-circle diffractometer with bisecting geometry and using a graphite-oriented monochromator, with Mo K α radiation $\lambda = 0.71096$ Å. Crystallographic and experimental details are summarized in Table 5.

Data were collected at room temperature. Two check reflections were monitored every 120 min and showed no significant variation. Intensities were corrected for Lorentz and polarization effects in the usual manner. No extinction correction was made, and it was not necessary to apply an absorption correction.

The structure was solved by a combination of direct methods (SHELXS 90) [15] and Fourier synthesis and refined (on F^2) (SHELXL 93) [16] by full matrix least squares calculations.

All the non-hydrogen atoms were refined anisotropically. Most of the hydrogen atoms were found in the Fourier synthesis map and refined, with the exception of the silicon-bonded methyl hydrogens which were located using geometric calculations and refined using a riding model with a thermal parameter equivalent to that of the C atom to which they were attached. Calculations were performed on an Alpha AXP Digital workstation.

4. Supplementary material

The supplementary material includes a complete list of bond distances and angles, anisotropic thermal factors, the calculated fractional coordinates of the hydrogen atoms, and a list of observed and calculated structure factors.

Acknowledgements

Financial support for this research by DGICYT (Project PB92-0178-C) is gratefully acknowledged. A.M. is grateful to Consejeria Educación (CAM) for a fellowship.

References

- [1] (a) F.R.W.P. Wild, L. Zsolnai, G. Huttner and H.H. Brintzinger, J. Organomet. Chem., 232 (1982) 233. (b) F.R.W.P. Wild, M. Wasiucionek, G. Huttner and H.H. Brintzinger, J. Organomet. Chem., 288 (1985) 63. (c) A. Schäfer, E. Karl, L. Zsolnai, G. Huttner and H.H. Brintzinger, J. Organomet. Chem., 328 (1987) 87. (d) P. Burger, J. Diebold, S. Gutmann, H.-U. Hund and H.H. Brintzinger, Organometallics, 11 (1992) 1319.
- [2] (a) H. Kopf and W. Kahl, J. Organimet. Chem., 64 (1974) C37, (b) C.M. Fendrick, E.A. Mintz, L.D. Schertz, T.J. Marks

- and V.W. Day, Organometallics, 3 (1984) 819. (c) H. Yasuda, K. Nagasuna, M. Akita, K. Lee and A. Nakamura, Organometallics, 3 (1984) 1470. (d) C.S. Bajgur, W.R. Tikkanen and J.L. Petersen, Inorg. Chem., 24 (1985) 2539. (e) G. Jeske, L.E. Schock, P.N. Swepston, H. Schumann and T.J. Marks, J. Am. Chem. Soc., 107 (1985) 8103. (f) P. Jutzi and R.D. Dickbreder, Chem. Ber., 119 (1986) 1750. (g) J. Muller, F. Ludemann and H.J. Kopf, Organomet. Chem., 303 (1986) 167. (h) W.A. Herrmann, J. Rohrmann, E. Herdtweck, W. Spaleck and A. Winter, Angew. Chem. Int. Ed. Engl., 28 (1989) 1511. (i) A. Kabi-Satpathy, C.S. Bajgur, K.P. Reddy and J.L. Petersen, J. Organomet. Chem., 363 (1989) 105. (j) W. Röll, H.H. Brintzinger, B. Rieger and R. Zolf, Angew. Chem. Int. Ed. Engl., 29 (1990) 279. (k) V.P. Conticello, L. Brard, M.A. Giardello, Y. Tsuji, M. Sabat, C.L. Stern and T.J. Marks, J. Am. Chem Soc., 114 (1992) 2761. (I) W. Spaleck, M. Antberg, J. Rohrmann, A. Winter, B. Bachmannn, P. Kiprof, J. Behm and W.A. Herrmann, Angew. Chem. Int. Ed. Engl., 31 (1992) 1347. (m) J. Okuda, Angew. Chem. Int. Ed. Engl., 31 (1992) 47. (n) H. Kawamura-Kuribayashi, N. Koga and K. Morokuma, J. Am. Chem. Soc., 114 (1992) 8687, (o) U. Stehling, J. Diebold, R. Kirsten, W. Röll, H.H. Brintzinger, S. Jüngling, R. Mülhaupt and F. Langhauser, Organometallics, 13 (1994) 964.
- [3] M. Bochmann and S. Lancaster, Angew. Chem. Int. Ed. Engl., 33 (1994) 1634.
- [4] (a) R. Gómez, T. Cuenca, P. Royo, W.A. Herrmann and E.J. Herdtweck, Organomet. Chem., 382 (1990) 103. (b) R. Gómez, T. Cuenca, P. Royo, and E. Hovestreydt, Organometallics, 10 (1991) 2516. (c) T. Cuenca, J.C. Flores, R. Gómez, P. Gómez-Sal, M. Parra-Hake and P. Royo, Inorg. Chem., 32 (1993) 3608. (d) G. Ciruelo, T. Cuenca, P. Gómez-Sal, A. Martin and P. Royo, J. Chem. Soc. Dalton Trans., (1995) 231.
- [5] (a) C.S. Bajgur, W.R. Tikkanen and J.L. Petersen, Inorg. Chem., 24 (1985) 2539. (b) C.S. Bajgur, S.B. Jones and J.L. Petersen, Organometallics, 4 (1985) 1929. (c) R. Gómez, T. Cuenca, P. Royo, M.A. Pellinghelli and A. Tiripicchio, Organometallics, 10 (1991) 1505. (d) T. Cuenca, R. Gómez, P. Gómez-Sal and P. Royo, J. Organomet. Chem., 454 (1993) 105. (e) S. Ciruelos, T. Cuenca, J.C. Flores, R. Gómez, P. Gómez-Sal and P. Royo, Organometallics, 12 (1993) 944. (f) T. Cuenca, A. Padilla, P. Royo, M. Parra-Hake, M.A. Pellinghelli and A. Tiripicchio, Organometallics, 14 (1995) 848.
- [6] (a) J. Weaver and P. Woodward, J. Cherr. Soc. Dalton Trans.,
 (1973) 1439. (b) P.A. Wegner, V.A. Uski, R.P. Kiester, S. Dabestani and V.W. Day, J. Am. Chem. Soc., 99 (1977) 4846.
 (c) M.E. Wright, T.M. Mezza, G.O. Nelson and N.R. Amstrong, Organometallies, 2 (1983) 1711. (d) W. Abrieland and J. Heck, J. Organomet. Chem., 302 (1986) 363. (e) N. Hock, W. Oroschin, G. Paolucci and R.D. Fischer, Angew. Chem. Int. Ed. Engl., 25 (1986) 738. (f) K. Qiao, R.D. Fischer, G. Paolucci, P. Traldi and E. Celon, Organometallies, 9 (1990) 1361.
- [7] (a) K.P. Reddy and J.L. Petersen, Organometallics, 8 (1989) 547. (b) K.P. Reddy and J.L. Petersen, Organometallics, 8 (1989) 2107. (c) J. Cacciola, K.P. Reddy and J.L. Petersen, Organometallics, 11 (1992) 665. (d) S. Ciruelos, T. Cuenca, J.C. Flores, R. Gómez, P. Gómez-Sal and P. Royo, Organometallics, 12 (1993) 944. (e) T. Cuenca, J.C. Flores, R. Gómez, P. Gómez-Sal, M. Parra-Hake and P. Royo, Inorg. Chem., 32 (1993) 3608.
- [8] (a) M. Fritz, J. Hiermeier, N. Hertkorn, F.H. Köhler, G. Müller, G. Reber and O. Steigelmann, Chem. Ber., 124 (1991) 1531. (b)
 P. Jutzi, R. Krallmann, G. Wolf, B. Neumann and H.-G. Summler, Chem. Ber., 124 (1991) 2391. (c) H. Atzkern, J. Hiermeier, B. Kanellakopulos, F. Köhler, G. Müller and O. Steigelmann, J. Chem. Soc. Chem. Commun., (1991) 997. (d) H. Atzkern, J. Hiermeier, F. Köhler and A. Steck, J. Organomet, Chem., 408 (1991) 281. (e) U. Siemeling, P. Jutzi, B. Neumann and H.G.

- Stammler, Organometallics, 11 (1992) 1328. (f) U. Siemeling and P. Jutzi, Chem. Ber., 125 (1992) 31. (g) M. Fritz, J. Hiermeier and F.H. Köhler, Z. Naturforsch. Teil B:, 49 (1994) 763. (h) H. Atzkorn, P. Bergerat, M. Fritz, J. Hiermeier, P. Hudeczek, O. Kahn. B. Kanellakopulos, F.H. Köhler and M. Ruhs, Chem. Ber., 127 (1994) 277. (i) F. Amor, P. Gómez-Sal, E. de Jesús, P. Royo and A. Vázquez de Miguel, Organometallics, 13 (1994) 4322.
- [9] (a) W. Mengele, J. Diebold, C. Troll, W. Röll and H.H. Brintzinger, Organometallics, 12 (1993) 1931. (b) H. Lang, S. Blau, A. Muth, K. Weiss and U. Neugebauer, J. Organomet. Chem., 490 (1995) C32. (c) H. Lang, S. Blau, H. Pritzkow and L. Zsolnai, Organometallics, 14 (1995) 1850. (d) J.Y. Corey, J.L. Huhmann and N.P. Rath, Inorg. Chem., 34 (1995) 3203. (e) A.V. Churakov, D.A. Lemenovskii and L.G. Kuz'mina, J. Organomet. Chem., 489 (1995) C81.
- [10] A. Cano, T. Cuenca, P. Gómez-Sal, B. Royo and P. Royo, Organometallics, 13 (1994) 1688.
- [11] K. Nakamoto, in M. Tsutsui (ed.), Characterization of Organometallic Compounds, Interscience, New York, 1969.
- [12] H. Frebolin, Basic One and Two Dimensional NMR Spectroscopy, VCH, Weinheim, Germany, 1991.
- [13] J. Hiermeier, F.H. Köhler and G. Müller, Organometallics, 10 (1991) 1787.
- [14] A. Cano, T. Cuenca, M. Galakhov, G.M. Rodriguez, P. Royo, C.J. Cardin and M.A. Convery, J. Organomet. Chem., 493 (1995) 17.
- [15] G.M. Sheldrick, Acta Crystallogr. Sect. A:, 46 (1990) 467.
- [16] G.M. Sheldrick, SHELXL 93, University of Göttingen, 1993.